Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antioxidants (Basel) ; 11(6)2022 May 27.
Article in English | MEDLINE | ID: covidwho-1869455

ABSTRACT

The molecular constituents of Camellia sinensis, in particular epigallocatechin-3-O-gallate (EGCG) and, more remarkably, the galloylated theaflavins, mainly theaflavin-3,3'-di-O-gallate (TF-3,3'-DG), have been reported to inhibit SARS-CoV-2 3-chymotrypsin-like protease (3CLpro), an enzyme required for the cleavage of its polyproteins, to produce vital individual functional proteins for viral cell replication. Our results for total catechin content revealed the values of 174.72, 200.90, and 211.75 mg/g dry weight (DW) in spring, and the values of 183.59, 191.36, and 215.09 mg/g DW in summer, for tea plantation zones 1, 2, and 3, respectively. For the TF-3,3'-DG content, the values of 2.68, 1.13, and 3.72 mg/g DW were observed in spring, and the values of 3.78, 2.06, and 8.91 mg/g DW in summer for zones 1, 2, and 3, respectively. In the same zone, different contents of TF-3,3'-DG were observed across plucking months of April, June, and August, with values of 1.13, 2.77, and 4.18 mg/g DW, respectively, showing higher values in summer. Different values of TF-3,3'-DG contents were also observed in the same tea plantation zone but from different plant parts, revealing higher values in the bud and the first and second leaves (3.62 mg/g DW) and lower values in the third and fourth leaves (1.14 mg/g DW). The TF-3,3'-DG content increased from 3.31 to 4.98 mg/g DW with increased fermentation time from 1 to 3 h, respectively, and increased for lower temperature and longer fermentation time. The aim of this study was to investigate the processing conditions that lead to maximum TF-3,3'-DG content and, given its potential impact as an inhibitor of the 3CLpro enzyme, to create a novel antiviral Azorean black tea.

2.
Foods ; 10(10)2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1438570

ABSTRACT

Bromelain is a complex combination of multiple endopeptidases of thiol and other compounds derived from the pineapple fruit, stem and/or root. Fruit bromelain and stem bromelain are produced completely distinctly and comprise unique compounds of enzymes, and the descriptor "Bromelain" originally referred in actuality to stem bromelain. Due to the efficacy of oral administration in the body, as a safe phytotherapeutic medication, bromelain was commonly suited for patients due to lack of compromise in its peptidase efficacy and the absence of undesired side effects. Various in vivo and in vitro studies have shown that they are anti-edematous, anti-inflammatory, anti-cancerous, anti-thrombotic, fibrinolytic, and facilitate the death of apoptotic cells. The pharmacological properties of bromelain are, in part, related to its arachidonate cascade modulation, inhibition of platelet aggregation, such as interference with malignant cell growth; anti-inflammatory action; fibrinolytic activity; skin debridement properties, and reduction of the severe effects of SARS-Cov-2. In this paper, we concentrated primarily on the potential of bromelain's important characteristics and meditative and therapeutic effects, along with the possible mechanism of action.

SELECTION OF CITATIONS
SEARCH DETAIL